Εμφάνιση αναρτήσεων με ετικέτα Αστροφυσική. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα Αστροφυσική. Εμφάνιση όλων των αναρτήσεων

Πέμπτη 24 Αυγούστου 2017

Solar Eclipse 2017 and other events

Την εβδομάδα που μας πέρασε είχαμε 3 ενδιαφέροντα γεγονότα ενώ σήμερα περιμένουμε (σε καμιά ώρα) ακόμα μία εκτόξευση από την SpaceX.
Ας τα πάρουμε με τη σειρά όμως.

eXtreme Matter meets eXtreme Gravity

Στις 17-19 είχαμε λοιπόν στο Bozeman, MT το δεύτερο workshop της σειράς που οργανώνει το πανεπιστήμιο της Montana (MSU), το οποίο είχε ως θέμα την φυσική των συμπαγών αντικειμένων και τα φαινόμενα ισχυρής βαρύτητας, δηλαδή τους αστέρες νετρονίων, τις μαύρες τρύπες, άλλα εξωτικά συμπαγή αντικείμενα, και τέλος τα βαρυτικά κύματα και τις διαδικασίες που τα δημιουργούν, όπως είναι οι συγκρούσεις μελανών οπών μεταξύ τους ή με αστέρες νετρονίων ή οι συγκρούσεις μεταξύ ζευγαριών αστέρων νετρονίων.
Στην κορυφή της ατζέντας ήταν τα αποτελέσματα που μπορούμε να πάρουμε από το NICER που αυτή τη στιγμή είναι σε λειτουργία στον διεθνή διαστημικό σταθμό και ετοιμάζεται να αρχίσει να παίρνει δεδομένα για επιστημονική χρήση (αφού η βαθμονόμιση ολοκληρώθηκε).
Ακόμα συζητήσαμε το τι μπορούμε να μάθουμε από την πιθανή ανίχνευση ενός σήματος από το LIGO που να προέρχεται από την σύγκρουση δύο αστέρων νετρονίων καθώς και τις προοπτικές ανίχνευσης παράλληλα ενός ηλεκτρομαγνητικού συνοδού σήματος.
Τέλος, στην ατζέντα ήταν και πιο εξωτικά θέματα, όπως η ύπαρξη εξωτικών αντικειμένων μέσα στα πλαίσια της Γενικής Σχετικότητας καθώς και η πιθανότητα να δούμε αποκλίσεις από τη Γενική Σχετικότητα.
Ένα ενδιαφέρον στοιχείο είναι ότι το προηγούμενο συνέδριο της σειράς είχε πραγματοποιηθεί στο τέλος του Αυγούστου το 2015, οπότε και λίγες μέρες μετά το LIGO ανίχνευσε το πρώτο βαρυτικό σήμα GW150914.

Ολική έκλειψη2017

Στις 21 του μήνα είχαμε την ολική έκλειψη που ήταν ορατή από τις ΗΠΑ. Πραγματικά δεν έχω λόγια για το φαινόμενο. Το μόνο που μπορώ να πω είναι ότι πρέπει κανείς να δει τουλάχιστον μία στη ζωή του.

Τέλος, για όποιον ενδιαφέρεται να παρακολουθήσει την σημερινή εκτόξευση, μπορεί να την δει εδώ



Κυριακή 4 Ιουνίου 2017

Το NICER είναι σε τροχιά προς τον ISS

Σήμερα είχαμε μια απόλυτα επιτυχημένη εκτόξευση από την Space-X και το παρατηρητήριο NICER είναι σε τροχιά και στο δρόμο για τον διεθνή διαστημικό σταθμό, μαζί με το υπόλοιπο φορτίο της αποστολής CRS-11.

Η Space-X εκτός από την πετυχημένη εναπόθεση του φορτίου της σε τροχιά είχε και μια απόλυτα πετυχημένη προσγείωση του πρώτου σταδίου του πύραυλού της, Flacon-9.

Συγχαρητήρια λοιπόν στην Space-X για την πολύ καλή δουλειά που έκανε και καλή συνέχεια. Το επόμενο στάδιο είναι η συνάντηση του ISS με την κάψουλα Dragon και η τοποθέτηση του NICER στον ISS.


















Σάββατο 3 Ιουνίου 2017

Το NICER κάνει σήμερα τη 2η απόπειρα εκτόξευσης

Σήμερα στις 5:07 p.m. EDT ή 21:07 UTC ή 24:07 ώρα Ελλάδος, θα έχουμε τη δεύτερη απόπειρα εκτόξευσης της αποστολής CRS-11 της Space-X που θα ανεφοδιάσει τον διεθνή διαστημικό σταθμό και θα μεταφέρει και το τηλεσκόπιο NICER που έχει ως στόχο την μελέτη των αστέρων νετρονίων.

Η αποστολή αυτή είναι πολύ σημαντική για την μελέτη των ιδιοτήτων των αστέρων νετρονίων και θα μπορέσει να μας δώσει πολλές πληροφορίες για την εσωτερική δομή τους και για τις ιδιότητες της ύλης σε πολύ υψηλές πυκνότητες. Ακόμα, θα μπορέσουμε ενδεχομένως να πραγματοποιήσουμε ακόμα πιο αυστηρούς ελέγχους της Γενικής Σχετικότητας μελετώντας τις ιδιότητες των αστέρων νετρονίων. Οι παρατηρήσεις από το NICER μαζί με τις μελλοντικές παρατηρήσεις βαρυτικών κυμάτων από την σύγκρουση μελανών οπών με αστέρες νετρονίων ή αστέρων νετρονίων με αστέρες νετρονίων θα μας δώσουν πληροφορίες που ήταν αδύνατο να συλλέξουμε μέχρι τώρα για αυτά τα αντικείμενα. Και φυσικά, όπως συμβαίνει συχνά στην αστροφυσική, ελπίζουμε ότι η φύση θα μας εκπλήξει ευχάριστα με νέα ενδιαφέροντα προβλήματα εκτός από τις πιθανές απαντήσεις στα υπάρχοντα ερωτήματα.


Πέμπτη 1 Ιουνίου 2017

GW170104 Ακόμα ένα βαρυτικό σήμα

Σήμερα, 1η Ιουνίου, ανακοίνωσε το LIGO την ανίχνευση ακόμα ενός βαρυτικού κύματος από την σύγκρουση δύο μελανών οπών (και εδώ).

Το σήμα από ότι φαίνεται περιγράφει τη σύγκρουση μιας μαύρης τρύπας μάζας περίπου 32 ηλιακές μάζες με μια άλλη μάζας περίπου 19 ηλιακές μάζες με αποτέλεσμα τον σχηματισμό μιας τελικής μαύρης τρύπας περίπου 49 ηλιακών μαζών.

Η σχετική εργασία δημοσιεύεται στο περιοδικό PRL ως, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.

Η πηγή του συγκεκριμένου σήματος βρίσκεται σε απόσταση περίπου 800 Mpc. Ένα από τα ενδιαφέροντα χαρακτηριστικά του σήματος αυτού είναι ότι τα σπίν των αρχικών μελανών οπών μάλλον δεν ήταν προσανατολισμένα στην ίδια κατεύθυνση.

Το παρακάτω σχήμα δείχνει και το σήμα που ανιχνεύθηκε. Όπως βλέπει κανείς, θυμίζει αρκετά το πρώτο σήμα που ανιχνεύθηκε.





Ένα ακόμα ενδιαφέρον αποτέλεσμα είναι ότι το σήμα αυτό θέτει ισχυρότερους περιορισμούς στη μάζα του βαρυτονίου.











NICER launches to the International Space Station

Αναβάλλεται για το Σάββατο η εκτόξευση λόγω κεραυνού.
5:07 p.m. EDT or 21:07 UTC



5:55 p.m. EDT (2155 GMT)


Τετάρτη 31 Μαΐου 2017

Ενδιαφέροντα αστροφυσικά νέα.

Για αυτή την εβδομάδα έχουμε δύο πολύ ενδιαφέροντα αστροφυσικά νέα. Το πρώτο σχετίζεται και με την ερχόμενη εκτόξευση της Space-X η οποία με την αποστολή CRS-11 που θα ανεφοδιάσει τον διεθνή διαστημικό σταθμό (ISS) θα μεταφέρει και ένα όργανο παρατήρησης στις ακτίνες Χ που έχει ως στόχο την μελέτη των αστέρων νετρονίων.

Συγκεκριμένα η εκτόξευση είναι προγραμματισμένη για την 1η του Ιουνίου


Μέχρι στιγμής όλα δείχνουν καλά και η εκτόξευση έχει 70% πιθανότητα για να γίνει όπως προβλέπει το πρόγραμμα.

Οι εκτοξεύσεις της Space-X φυσικά έχουν πάντα ενδιαφέρον, αλλά η συγκεκριμένη έχει έναν λόγο παραπάνω να μας ενδιαφέρει αφού θα πάρει μαζί της στο διαστημικό σταθμό τον Neutron Star Interior Composition Explorer (NICER). Όπως λέει και το όνομα ο στόχος του οργάνου είναι η μελέτη της σύστασης και της δομής του εσωτερικού των αστέρων νετρονίων, ένα επιστημονικό πεδίο που με ενδιαφέρει ιδιαίτερα. Περισσότερες πληροφορίες για το τι θα κάνει το NICER μπορεί να δει κανείς στο παρακάτω βίντεο.



Μια αποστολή τύπου NICER την περιμένουμε εδώ και πολύ καιρό και ελπίζουμε ότι θα μας βοηθήσει να ξεκλειδώσουμε πολλά από τα μυστήρια της δομής των αστέρων νετρονίων. Αυτό κάνει φυσικά ακόμα πιο σημαντική την επερχόμενη εκτόξευση της Space-X. Ας ελπίσουμε να πάνε όλα καλά γιατί ένα όργανο σαν το NICER σε συνδυασμό με την αστρονομία βαρυτικών κυμάτων θα ανοίξουν τους ορίζοντές μας προς πολλές κατευθύνσης. Αν όλα πάνε καλά, τα επόμενα χρόνια οι αστέρες νετρονίων έχουν να μας μάθουν πολλά πράγματα, τόσο για τις ιδιότητες της ύλης σε πυκνότητες υψηλότερες των πυρηνικών, όσο και για την ίδια την βαρύτητα.

Το άλλο νέο είναι ότι περιμένουμε την επόμενη ανακοίνωση του LIGO από ότι φαίνεται την Πέμπτη.


Τετάρτη 15 Ιουνίου 2016

Boxing Day GW151226


Στο συνέδριο της American Astronomical Society, που πραγματοποιείται αυτές τις μέρες, αναμένεται να παρουσιαστούν νέα και εξελίξεις γύρω από το υπόλοιπο Science run του παρατηρητηρίου LIGO. Σύντομα λοιπόν στην προγραμματισμένη ομιλία του LIGO collaboration, κάποιοι περιμένουν να ακούσουν και για την ανάλυση ενός ακόμα (ή περισσότερων?) σήματος. Όποιος ενδιαφέρεται μπορεί να παρακολουθήσει την ενημέρωση online.



Το event rate πάντως φαίνεται να είναι πολλά υποσχόμενο, ειδικά τώρα που θα ξεκινήσει και ο νέος κύκλος παρατηρήσεων με τις βελτιώσεις και την αυξημένη ευαισθησία. Και το επόμενο διάστημα, που θα μπει και το VIRGO στο παιχνίδι, διευρύνονται οι προοπτικές για πολύ και ενδιαφέρουσα Αστροφυσική.

Για να δούμε.

Update:







Τετάρτη 17 Φεβρουαρίου 2016

Βαρυτικά κύματα - Εκδηλώσεις

Έχουμε λοιπόν δύο ενημερωτικές εκδηλώσεις την επόμενη εβδομάδα σχετικά με την ανίχνευση των πρώτων βαρυτικών κυμάτων
Update από τα σχόλια:
Από ότι φαίνεται οι σχετικές εκδηλώσεις είναι 3 αφού θα υπάρξει και μια ομιλία αυτή τη βδομάδα στη Θεσσαλονίκη (δες αφίσα στο τέλος).

Την Τετάρτη 24 Φεβρουαρίου και ώρα 1:00 στο αμφιθέατρο "Αρίσταρχος" του τμήματος Φυσικής του ΕΚΠΑ στην Πανεπιστημιούπολη Ζωγράφου, θα δοθεί το ακόλουθο σεμινάριο:

Ομιλητής: Καθηγητής Κωνσταντίνος Κόκκοτας
Πανεπιστήμιο Tübingen, Γερμανία

Τίτλος: Βαρυτικά κύματα – Ανίχνευση και Προοπτικές

Περίληψη: Στην ομιλία θα γίνει εκτενής ανάλυση της πολύ πρόσφατης ανίχνευσης των βαρυτικών κυμάτων από την ομάδα του ανιχνευτή LIGO. Θα συζητηθεί η μεγάλη σημασία της ανίχνευσης αυτής και οι προοπτικές που ανοίγονται όσον αφορά στο μέλλον της αστρονομίας βαρυτικών κυμάτων, τόσο από θεωρητική όσο και από παρατηρησιακή σκοπιά.

Update 23/3: Live αναμετάδοση του σεμιναρίου του Κ. Κόκκοτα εδώ http://live.uoa.gr

Το βασικό ερευνητικό πεδίο του Καθηγητή Κωνσταντίνου Κόκκοτα είναι πάνω στα βαρυτικά κύματα και την δυναμική των αστέρων νετρονίων και των μελανών οπών. Είναι από τους κορυφαίους ερευνητές στο πεδίο των quasi-normal modes (QNMs) των μελανών οπών και των αστέρων νετρονίων και στο πεδίο της αστροσεισμολογίας των αστέρων νετρονίων.

Πριν μερικά χρόνια και με αφορμή και ένα συνέδριο ΝΕΒ που είχε πραγματοποιηθεί στη Θεσσαλονίκη, η εκπομπή "Ανιχνεύσεις" είχε ως καλεσμένους τους Κ. Κοκκοτα και Νίκο Στεργιούλα (ο οποίος κάνει έρευνα στο πανεπιστήμιο της Θεσσαλονίκης πάνω στην αριθμητική σχετικότητα και την προσομοίωση συμπαγών πηγών βαρυτικών κυμάτων), καθώς και τον Λέανδρο Περιβολαρόπουλο.
Έχει ενδιαφέρον να δει κανείς το βίντεο και να δει για παράδειγμα τι περιμέναμε πριν από 6-7 χρόνια για τα βαρυτικά κύματα.




Μια μέρα πριν, την Τρίτη 23 Φεβρουαρίου 2016,στο Ίδρυμα Ευγενίδου στις 7:00 το απόγευμα, ο Δρ. Θεοχάρης Αποστολάτος, Αναπληρωτής Καθηγητής, Τμήματος Φυσικής, Ε.Κ.Π.Α. θα δώσει μια ομιλία για το ευρύτερο κοινό με τίτλο, «Βαρυτικά Κύματα: Πλέον μπορούμε να ακούσουμε τη μελωδία του Κόσμου», όπου θα παρουσιάσει τα αποτελέσματα του LIGO.

Ο Θεοχάρης Αποστολάτος, έχει διατελέσει μαθητής του Κιπ Θορν και το βασικό του ερευνητικό πεδίο είναι η αστρονομία βαρυτικών κυμάτων (πηγές και ανίχνευση) καθώς και οι ιδιότητες του χωροχρόνου γύρω από συμπαγή αντικείμενα. Μάλιστα κάποια στοιχεία της ανάλυσης του πρόσφατου βαρυτικού σήματος βασίζονται και σε δικές του εργασίες.
Περισσότερες λεπτομέρειες για αυτή την εκδήλωση μπορεί να δει κανείς εδώ.

Update: Σχετικά με την εκδήλωση στη Θεσσαλονίκη η παρακάτω αφίσα έχει τις λεπτομέρειες (thanks physicsgg).


Και επειδή είναι πιο οργανωμένοι στη Θεσσαλονίκη, η εκδήλωση θα μεταδοθεί και με live streaming από τις διευθύνσεις
http://www.auth.gr/video/19884
http://www.auth.gr/news/audiovisual

Πέμπτη 11 Φεβρουαρίου 2016

Το πρώτο σήμα Βαρυτικών Kυμάτων

Τα βαρυτικά κύματα είναι η τελευταία μεγάλη πρόβλεψη της θεωρίας της Γενικής Σχετικότητας για την ανίχνευση των οποίων έχει γίνει μια μεγάλη προσπάθεια τις τελευταίες δεκαετίες με διάφορους ανιχνευτές (LIGO, VIRGO, GEO 600, TAMA 300, κ.ο.κ. δες εδώ) που είναι σε λειτουργία, αναβαθμίζονται ή θα αναβαθμιστούν, και σχεδιάζονται να κατασκευαστούν στο μέλλον.

Η πιο πρόσφατη εξέλιξη ήταν μετά το καλοκαίρι που τέθηκε σε λειτουργία το αναβαθμισμένο LIGO το οποίο έχει αυξήσει σημαντικά την ευαισθησία, αυξάνοντας έτσι τις πιθανότητες ανίχνευσης βαρυτικών κυμάτων. Πολύς κόσμος μάλιστα ήταν σίγουρος ότι το LIGO θα έβλεπε κάποιο σήμα μέσα στο 2016.

Και από ότι φαίνεται έτσι και έγινε. Και μάλιστα έγινε και με τον πιο θεαματικό τρόπο. Το LIGO είδε στις 14 Σεπτέμβρη 2015 στις 9:50:45 UTC βαρυτικό σήμα στην περιοχή των συχνοτήτων από 35Hz ως τα 250Hz που υποδεικνύει την συγχώνευση δύο μελανών οπών μεγάλης μάζας, $$\reverse\opaque 29^{+4}_{-4} M_{\odot}$$ και $$\reverse\opaque 36^{+5}_{-4} M_{\odot}$$ η κάθε μία, οι οποίες είχαν ως αποτέλεσμα τον σχηματισμό μιας νέας μαύρης τρύπας η οποία αρχικά ταλαντωνόταν εξαιτίας της βίαιης διαδικασίας της σύγκρουσης που τελικά μετά από κάποιο χρόνο, και αφού εξέπεμψε όλες τις διαταραχές μέσα από μια διαδικασία που λέγετε ringdown, κατέληξε σε μια περιστρεφόμενη μαύρη τρύπα τύπου Kerr με μάζα $$\reverse\opaque 62^{+4}_{-4} M_{\odot}$$ και περιστροφή $$\reverse\opaque j= J/M^2= 0.67$$. Από την διαδικασία ενέργεια ίση με $$\reverse\opaque 3^{+0.5}_{-0.5} M_{\odot}c^2$$ εκπέμφθηκε υπό μορφή βαρυτικών κυμάτων. Η πηγή υπολογίζεται ότι βρίσκεται σε luminosity distance $$\reverse\opaque 410^{+160}_{-150} Mpc$$ ή διαφορετικά σε κοσμολογικό redshift ίσο με $$\reverse\opaque z=0.09^{+0.03}_{-0.04}$$.
Το LIGO λοιπόν μέτρησε τα βαρυτικά κύματα και στους δύο ανιχνευτές του (LIGO Hanford, Washington State και LIGO Livingston, Louisiana State) που έχουν απόσταση 3002 km.

Το σήμα από μια τέτοια διαδικασία, σύμφωνα με τις προβλέψεις, έχει 3 χαρακτηριστικά μέρη, το πρώτο από την αρχική φάση όπου οι δύο αρχικές μαύρες τρύπες περιστρέφονται η μία γύρω από την άλλη εκπέμποντας βαρυτικά κύματα και χάνοντας ενέργεια όπου πλησιάζουν μέχρι να συγκρουστούν (η διαδικασία αυτή λέγεται inspiral και το κομμάτι αυτό του σήματος λέγεται chirp), το δεύτερο όπου έχουμε την βίαιη σύγκρουση, και τέλος το τρίτο όπου το τελικό αντικείμενο ταλαντώνεται και εκπέμπει όλες τις διαταραχές που έχει (ringdown) μέχρι να καταλήξει σε μια περιστρεφόμενη μαύρη τρύπα τύπου Kerr που διαθέτει μόνο μάζα και περιστροφή και δεν έχει καμία επιπλέον πολυπλοκότητα στη δομή της, όπως προβλέπει το no-hair theorem.

Και εδώ είναι που αρχίζει να γίνεται πραγματικά ενδιαφέρον το πράγμα, πέρα από την απλή επαλήθευση της ύπαρξης και την άμεση παρατήρηση των βαρυτικών κυμάτων, αφού από το αρχικό σήμα του inspiral μπορούμε να μετρήσουμε τις ιδιότητες των δύο αρχικών μελανών οπών, ενώ από το ringdown μπορούμε να μετρήσουμε τις ιδιότητες τη τελικής μαύρης τρύπας. Και το μεγάλο ερώτημα εδώ είναι, είναι οι μαύρες αυτές τρύπες οι μαύρες τρύπες που προβλέπει η Γενική Σχετικότητα; Έχουν όλες τις σωστές ιδιότητες; Έχουν τα σωστά ανώτερα πολύπολα; Κάποιες από τις εναλλακτικές θεωρίες βαρύτητας που έχουμε προβλέπουν ότι οι περιστρεφόμενες μαύρες τρύπες θα είναι λίγο διαφορετικές από τις μαύρες τρύπες τύπου Kerr που προβλέπει η σχετικότητα. Κάποιες άλλες θεωρίες προβλέπουν ότι θα είναι ίδιες με της σχετικότητας. Η μέτρηση λοιπόν αυτών των ιδιοτήτων θα μας πει ακόμα περισσότερα για τη θεωρία της βαρύτητας, από την απλή επαλήθευση της ύπαρξης των βαρυτικών κυμάτων.

Το πρώτο μεγάλο αποτέλεσμα λοιπόν είναι ότι το LIGO κατάφερε να να παρατηρήσει την πρώτη συγχώνευση δύο μελανών οπών (ένα φαινόμενο που παρατηρούμε για πρώτη φορά) καθώς και να ανιχνεύσει άμεσα βαρυτικά κύματα, επιβεβαιώνοντας έτσι την ύπαρξή τους σύμφωνα με τις προβλέψεις της Γενικής Σχετικότητας και των επεκτάσεων/τροποποιήσεών της. Το δεύτερο μεγάλο αποτέλεσμα έχει να κάνει με την μέτρηση των ιδιοτήτων, με τη βοήθεια των βαρυτικών κυμάτων, αυτών των μελανών οπών, που από την μία επιτρέπει τον έλεγχο της σχετικότητας και των διαφόρων εναλλακτικών θεωριών και από την άλλη συνιστά την πραγματοποίηση της πρώτης παρατήρησης ενός νέου κλάδου αστρονομίας, αυτού της αστρονομίας βαρυτικών κυμάτων. Και το δεύτερο είναι το πιο σημαντικό ίσως, αφού είναι η αρχή ενός νέου παράθυρου στο σύμπαν που θα μας βοηθήσει να ξεκλειδώσουμε ακόμα περισσότερα μυστικά της φύσης μαζεύοντας πληροφορίες από ακόμα περισσότερα αντικείμενα στο μέλλον (όπως είναι οι αστέρες νετρονίων, οι εκρήξεις υπερκαινοφανών κλπ).

Και τι είδε λοιπόν το LIGO; Το LIGO μέτρησε καθαρά το αρχικό σήμα του inspiral με τη διαδικασία του match filtering από το οποίο μπόρεσε να εξάγει τις αρχικές μάζες των δύο μελανών οπών, $$\reverse\opaque 29^{+4}_{-4} M_{\odot}$$ και $$\reverse\opaque 36^{+5}_{-4} M_{\odot}$$. Από τα στοιχεία του inspiral οι ερευνητές προέβλεψαν την μάζα και το σπιν της τελικής μαύρης τρύπας.

Ακόμα μέτρησε καθαρά και το ringdown από το οποίο κατάφερε να εξάγει την μάζα και το σπιν της τελικής μαύρης τρύπας. Τα δύο αποτελέσματα από την όλη διαδικασία συμπίπτουν με τις προβλέψεις της Γενικής Σχετικότητας. Περισσότερες λεπτομέρειες σχετικά με αυτό το θέμα θα παρουσιστούν σε εργασίες που θα ακολουθήσουν.

Και μια ακόμα ενδιαφέρουσα μέτρηση είναι αυτή της μέτρησης της ταχύτητας των βαρυτικών κυμάτων. Από τη φάση του βαρυτικού κύματος μπορεί να εξάγει κάνεις περιορισμούς για την ταχύτητα ή διαφορετικά για την μάζα του κβάντου της βαρύτητας, δηλαδή του γκραβιτονίου. Και το βαρυτικό κύμα λοιπόν κινείται με την ταχύτητα του φωτός και είναι όπως το προβλέπει η σχετικότητα χωρίς μάζα. Περισσότερα για αυτό επίσης θα εμφανιστούν σε επόμενες εργασίες. Περισσότερες λεπτομέρειες μπορεί να δει κανείς εδώ.

Αρχίζει λοιπόν η αστρονομία βαρυτικών κυμάτων και το μέλλον φαντάζει λαμπρό.



Τετάρτη 10 Φεβρουαρίου 2016

Το live stream της ανακοίνωσης του LIGO

Το National Science Foundation προσφέρει το παρακάτω live stream για το event.



Δευτέρα 8 Φεβρουαρίου 2016

Περί βαρυτικών κυμάτων και LIGO

Με την όλη φημολογία γύρω από την επερχόμενη ανακοίνωση ανίχνευσης βαρυτικών κυμάτων από τον ανιχνευτή LIGO, επανέρχεται στο προσκήνιο και η υπόθεση με το BICEP2 και την ανακοίνωσή του σχετικά με την μέτρηση της πόλωσης της ακτινοβολίας υποβάθρου μικροκυμάτων (CMB) που υποδείκνυε ότι κατά την πληθωρισμική φάση του σύμπαντος είχαν δημιουργηθεί βαρυτικά κύματα που άφησαν μια χαρακτηριστική υπογραφή στην πόλωση της ηλεκτρομαγνητικής ακτινοβολίας του CMB.

Αυτό που διαβάζουμε λοιπόν είναι ότι το BICEP2 είχε ανακοινώσει ότι είδε/μέτρησε βαρυτικά κύματα από τη μεγάλη έκρηξη αλλά τελικά διαψεύστηκε.
Τον Μάρτιο του 2015, η ερευνητική κοινότητα είχε αναστατωθεί από φήμες για ανακάλυψη ενός ιδιαίτερου είδους βαρυτικών κυμάτων, τα οποία πρέπει να εμφανίστηκαν μια στιγμή μετά τη Μεγάλη Έκρηξη.
Η μελέτη όμως τέθηκε υπό αμφισβήτηση, και ύπαρξη των βαρυτικών κυμάτων μένει ανεπιβεβαίωτη.

Αυτό είναι ατυχώς ανακριβές που με περισσότερους από έναν τρόπους παραπληροφορεί αντί να πληροφορεί και επιπλέον προκαλεί σύγχυση γύρω από την αξία της άμεσης μέτρησης βαρυτικών κυμάτων από μια πηγή έναντι της έμμεσης επιβεβαίωσης της ύπαρξής τους.

Για αρχή λοιπόν, περί τίνος πρόκειται η ιστορία με το BICEP2; Τι μέτρησε τελικά; Τι είχε να πει για τα βρυτικά κύματα;

Ερώτηση: Τι μέτρησε το BICEP2;
Απάντηση: Το BICEP2 μέτρησε την πόλωση της διάχυτης ηλεκτρομαγνητικής ακτινοβολίας που προέρχεται από τις πρώτες φάσεις της εξέλιξης του σύμπαντος. Το όργανο είναι μια κεραία που μετρά ηλεκτρομαγνητική ακτινοβολία.

Ερώτηση: Και η ιστορία με τα βαρυτικά κύματα;
Απάντηση: Η πληροφορία για τα βαρυτικά κύματα είναι έμμεση και βρίσκεται στην πόλωση της ηλεκτρομαγνητικής ακτινοβολίας. Έμμεση παρατήρηση βαρυτικής ακτινοβολίας έχουμε και από άλλα συστήματα, όπως είναι τα διπλά συστήματα αστέρων νετρονίων τα οποία τα βλέπουμε να χάνουν ενέργεια καθώς γυρνάει το ένα άστρο γύρω από το άλλο και η απώλεια ενέργειας που βλέπουμε είναι τόση όση προβλέπει η σχετικότητα για την εκπομπή βαρυτικής ακτινοβολίας. Το πιο διάσημο σύστημα όπου βλέπουμε αυτό το φαινόμενο είναι ο Hulse-Taylor pulsar PSR B1913+16 η ανάλυση του οποίου τους έδωσε και το Νόμπελ (στους Hulse και Taylor).
Αλλά αυτή είναι έμμεση παρατήρηση και προκύπτει από κάτι άλλο που βλέπουμε το οποίο μας προσφέρει πληροφορία για τα βαρυτικά κύματα. Δεν είναι παρατήρηση βαρυτικών κυμάτων.
Και για να είμαστε ακριβείς, μπορεί η αρχική ανακοίνωση του BICEP2 να έδωσε μια υπερεκτιμημένη τιμή για την πόλωση εξαιτίας βαρυτικών κυμάτων από τον πληθωρισμό, αλλά αυτή τη στιγμή μετά από νέα ανάλυση και σε συνεργασία με την ομάδα του PLANCK έχουν δώσει ένα νέο άνω όριο για την πόλωση από βαρυτικά κύματα από τον πληθωρισμό.
Και τι λέει αυτό για τα βαρυτικά κύματα; Τίποτα (σχεδόν). Το μόνο που λέει είναι ότι μοντέλα του πληθωρισμού που προβλέπουν περισσότερη πόλωση από βαρυτικά κύματα δεν ευνοούνται από τα δεδομένα.


Ας επιστρέψουμε λοιπόν στην αναμενόμενη ανακοίνωση του LIGO.
Ερώτηση: Και ποια είναι τελικά η διαφορά; Γιατί είναι πιο σημαντικό το LIGO;
Απάντηση: Η διαφορά είναι ότι εδώ μιλάμε για άμεση παρατήρηση βαρυτικών κυμάτων. Είναι η διαφορά του να είσαι τυφλός και να σου λέει τι βλέπει κάποιος άλλος, και να το βλέπεις εσύ με τα ίδια σου τα μάτια. Ή για να δώσω ένα καλύτερο παράδειγμα, είναι η διαφορά του να αντιλαμβάνεσαι μια μουσική συμφωνία επειδή βλέπεις ή ακουμπάς με το χέρι σου ένα τζάμι που δονείται από τον ήχο και να την ακούς με τα ίδια σου τα αφτιά.
Το LIGO δεν θα βασίζεται σε έμμεσες ενδείξεις της ύπαρξης των βαρυτικών κυμάτων, αλλά μετρά το ίδιο την αλλαγή του μήκους, την συστολή και διαστολή του χώρου ανάμεσα στους καθρέφτες του που προκαλεί το κύμα καθώς περνάει από τον ανιχνευτή. Είναι το ίδιο το “τύμπανο" που πιάνει τον “ήχο”.
Και αυτός ο “ήχος" δεν είναι απλά ακόμα ένα πράγμα που είδαμε ότι υπάρχει και τελείωσε. Αυτός ο “ήχος” κρύβει “μουσική" μέσα του. Κρύβει πληροφορία για την ίδια την φύση της βαρύτητας και κρύβει πληροφορία για την πηγή του σήματος. Με τα πρώτα σήματα του LIGO θα μάθουμε πράγματα για την βαρύτητα και για αστροφυσικά συστήματα σε συνθήκες που μέχρι τώρα δεν είχαμε κανένα τρόπο να μάθουμε και δεν είχαμε ακουμπήσει. Ανοίγουμε τα μάτια μας σε έναν καινούριο αθέατο μέχρι τώρα κόσμο. Ακούμε τους ήχους του σύμπαντος για πρώτη φορά.

Αυτό λοιπόν περιμένουμε τις επόμενες ημέρες από την ομάδα του LIGO και όχι το να υπάρχουν βαρυτικά κύματα ή αν ο Einstein είχε δίκιο ή άδικο ή ποιος θα πάρει το Νόμπελ. Αυτά είναι τρίχες κατσαρές.
Περιμένουμε να δούμε τι ακούσαμε για πρώτη φορά τώρα που ανοίξαμε τα αφτιά μας στο Σύμπαν, γιατί μέχρι τώρα ήμασταν κουφοί.


Woohoo!!!! δεν λες τίποτα...

Παρασκευή 5 Φεβρουαρίου 2016

More LIGO rumors

Αν είχε h-index το twitter, κάποιοι θα χτύπαγαν κόκκινο στις αυτοαναφορές. Συνεχίζονται λοιπόν οι φήμες σχετικά με την ανίχνευση βαρυτικών κυμάτων από το LIGO.



Η αλήθεια είναι ότι το πράγμα γίνεται όλο και πιο συγκεκριμένο. Η ιστορία για την συνέντευξη τύπου στις 11/2 έχει ακουστεί και αλλού, αλλά μέχρι αυτή τη στιγμή, δεν υπάρχει καμία σχετική ανακοίνωση και μιλάμε για μόλις μια βδομάδα από σήμερα.

Τέλος πάντων, το θέμα δεν είναι αν έχουν βάση οι φήμες του Krauss (δεν μπορώ να επιβεβαιώσω ή να διαψεύσω αυτή τη στιγμή), αλλά αν η πρακτική που ακολουθεί σχετικά με ένα τόσο σοβαρό θέμα είναι τελικά για καλό ή για κακό.

Κάποιοι συγκρίνουν την συγκεκριμένη κατάσταση με την περίπτωση των νετρίνων του OPERA και της πόλωσης του CMB από το BICEP, αλλά στην πραγματικότητα είναι εντελώς διαφορετικές περιπτώσεις. Στις πρώτες δύο είχαμε τους ερευνητές να ανακοινώνουν την στιγμή που ένοιωθαν έτοιμοι τα αποτελέσματά τους, σωστά ή λάθος, και μετά η υπόλοιπη επιστημονική κοινότητα και ο κόσμος έκαναν ότι καταλάβαιναν και ένοιωθαν με ότι παρουσιάστηκε από τις δύο ομάδες. Το ότι υπήρχαν προβλήματα με τα δεδομένα και τα συμπεράσματα του OPERA και του BICEP, που προκάλεσαν μια σχετική φασαρία, δεν έχει καμία σημασία.

Από την άλλη εδώ έχουμε κάτι διαφορετικό. Δεν υπάρχει κανένα αποτέλεσμα και κανένα δεδομένο και το μόνο που κάνει η όλη φημολογία είναι να ασκεί πίεση χωρίς λόγο στους ερευνητές που προσπαθούν να κάνουν την δουλειά τους. Δεν νομίζω ότι μπορεί να κερδίσει κανείς κάτι από αυτή την ιστορία και θα δημιουργήσει πρόβλημα μετά αν κάτι έχει πάει στραβά.

Οπότε, το επιχείρημα ότι κάποιοι προσπαθούν με αυτόν τον τρόπο να προκαλέσουν το ενδιαφέρον του κόσμου το θεωρώ εντελώς άστοχο, αφού με αυτόν τον τρόπο μπορεί να κάνουν και ζημιά και σε τελική ανάλυση το κουτσομπολιό δεν μπορεί να θεωρηθεί science outreach.


Update (6/2/16): Δυστυχώς κάποιοι το ξεφτίλισαν εντελώς το πράγμα δείχνοντας απόλυτη έλλειψη σεβασμού στους ανθρώπους που κάνουν όλο αυτόν τον καιρό την σκληρή δουλειά της μεθοδικής συλλογής και ανάλυσης των δεδομένων. Το Science ανέβασε άρθρο που παρουσιάζει e-mail με λεπτομέρειες. Δηλαδή τι να σχολιάσει κανείς; Ο άνθρωπος το έστειλε το e-mail σε όλο το τμήμα. Θα μπορούσε να δώσει και συνέντευξη τύπου ή να διαφημίζει και να πουλάει εισιτήρια για δικό του event με αφορμή την ανακοίνωση, όπως έκανε μια άλλη ψυχή που φιγουράρει στην αρχή του post.

Ντροπή.

Πέμπτη 21 Ιανουαρίου 2016

Planet IX και alien mega-structures

Υπάρχουν μερικά ενδιαφέροντα νέα αυτές τις μέρες τα οποία αξίζει να αναφέρουμε.

Και θα ξεκινήσω με το πιο πρόσφατο από το Caltech και αφορά την πιθανότητα ύπαρξης ενός ακόμα πλανήτη σε απόσταση πάνω από 200 αστρονομικές μονάδες από τον ήλιο με μάζα κάπου ανάμεσα σε 10 μάζες Γης και τη μάζα του Ποσειδώνα. Οι ενδείξεις για την ύπαρξη αυτού του πλανήτη που δεν πλησιάζει πότε μέσα από αυτές τις 200 αστρονομικές μονάδες προέρχονται από τις παρατηρήσεις των τροχών διαφόρων σωμάτων της ζώνης Kuiper τα οποία φαίνεται να έχουν αρκετά ασυνήθιστες τροχιές που θα μπορούσαν να εξιγηθούν από την υπόθεση ενός πλανήτη που τις οδηγεί.





Εδώ μπορεί να βρει κανείς και την σχετική ανακοίνωση από το Caltech. Φυσικά μέχρι να τον δούμε τον πλανήτη και να επιβεβαιωθεί η ανακάλυψή του έχουμε ακόμα αρκετή δουλειά μπροστά μας. Πάντως η προοπτική είναι πολύ ενδιαφέρουσα.

Το δεύτερο νέο αφορά το παράξενο άστρο KIC 8462852 ή αλλιώς το "WTF star" (where's the flux) το οποίο είχε παρατηρηθεί να έχει πολύ ιδιαίτερη συμπεριφορά ως προς τη λαμπρότητά του. Μια από τις λίγες πιθανές εξηγήσεις που είχαν προταθεί και ήταν συμβατή με τις παρατηρήσεις ήταν ότι κάτι συνέβαινε με κάποιο σμήνος κομητών γύρω από το άστρο που προκαλούσε αυτές τις περίεργες αλλαγές στη λαμπρότητα. Η άλλη εξήγηση ήταν ότι αυτό που παρατηρούμε θα μπορούσε να είναι κάποιο κατασκευή τύπου Dyson sphere.

Μια νέα μελέτη προσθέτει ένα ενδιαφέρον νέο κομμάτι στο παζλ.



Από ότι φαίνεται από ιστορικά δεδομένα, το συγκεκριμένο άστρο παρουσιάζει μείωση στην λαμπρότητά του από την πρώτη στιγμή που το παρατηρήσαμε, εδώ και 100 χρόνια περίπου. Αυτή η συμπεριφορά είναι εντελώς ασυνήθιστη για αυτού του τύπου τα άστρα. Οπότε το πράγμα γίνεται πολύ ενδιαφέρον.

LOL

Ο καιρός γαρ εγγύς σχετικά και με ένα άλλο θέμα (και φαίνεται το timing να είναι εξαιρετικό).

Δευτέρα 11 Ιανουαρίου 2016

LIGO rumors και βαρυτικά κύματα

Από σήμερα το πρωί ξεκίνησαν πάλι διάφορες φήμες ότι το LIGO έχει ανιχνεύσει σήμα βαρυτικών κυμάτων. Φυσικά όλοι οι συνήθεις ύποπτοι έχουν μπει στο παιχνίδι.





Από όσο ξέρω πάντως δεν υπάρχει τίποτα επίσημο και την τελευταία φορά που είχε συμβεί κάτι παρόμοιο πριν μερικούς μήνες, μόλις είχε αρχίσει το advanced LIGO να λειτουργεί, δεν οδήγησε πουθενά όπως εξηγεί το πρώτο λινκ στο πρώτο tweet (το δεύτερο αναφέρεται στην νέα φήμη, ενώ ο Krauss φαίνεται να προσπαθεί να βγει λάδι για την προηγούμενη ράδιο αρβύλα που είχε ξεκινήσει). Υπομονή λοιπόν. Μακάρι το 2016 να είναι η χρονιά που θα δούμε τα πρώτα βαρυτικά κύματα.

Σάββατο 17 Οκτωβρίου 2015

KIC 8462852: Ένα ιδιάζον άστρο

Πάει καιρός από την τελευταία φορά που έγραψα κάτι στο blog, αλλά αυτή η ιστορία που εμφανίστηκε την περασμένη εβδομάδα είναι πολύ ενδιαφέρουσα για να μην την σχολιάσω έστω και σύντομα.

Αυτές τις μέρες λοιπόν, ήρθε στην επικαιρότητα η πρόσφατη εργασία των T. S. Boyajian et al. με τίτλο "Planet Hunters X. KIC 8462852 - Where's the Flux?" (arXiv:1509.03622 [astro-ph.SR]) και η οποία παρουσιάζει τα αποτελέσματα των παρατηρήσεων του τηλεσκοπίου Kepler του άστρου KIC 8462852. Το άστρο αυτό λοιπόν παρουσιάζει αρκετά ιδιάζουσες καμπύλες φωτός και συνολικά χαρακτηριστικά, που κάνουν την "φυσική" τους εξήγηση πολύ δύσκολη. Από την διερεύνηση του συνόλου των παρατηρήσεων ένα σενάριο αναδεικνύεται ως το επικρατέστερο φυσικό σενάριο και αυτό είναι ότι κάποιο αρκετά σπάνιο κοσμικό γεγονός έχει συμβεί, το οποίο πιθανότατα ενεργοποιήθηκε από την διέλευση ενός άλλου άστρου το οποίο διατάραξε τις τροχιές του νέφους των κομητών που περιβάλει το άστρο (κάτι σαν το δικό μας νέφος του Oort) με αποτέλεσμα η εσωτερική περιοχή του αστρικού συστήματος να έχει κατακλυστεί από κομήτες οι οποίοι διαλύονται ή συγκρούονται προκαλώντας έτσι τις περίεργες αλλαγές στην ένταση των καμπύλων φωτός του κεντρικού άστρου.

Όσο αστροφυσικά ενδιαφέρουσα και αν είναι αυτή η προοπτική, υπάρχει μια ακόμα πιο ενδιαφέρουσα πιθανή εξήγηση, και αυτή είναι η πιθανότητα το όλο φαινόμενο να οφείλεται σε κάποια τεχνητή κατασκευή, δηλαδή πρακτικά μια κατασκευή τύπου Dyson (Dyson sphere) στην φάση της δημιουργίας της από έναν εξωγήινο πολιτισμό. Το ενδεχόμενο αυτό εξετάζει η νέα εργασία των Jason T. Wright et al. με τίτλο "The Ĝ Search for Extraterrestrial Civilizations with Large Energy Supplies. IV. The Signatures and Information Content of Transiting Megastructures" (arXiv:1510.04606 [astro-ph.EP]).

Περισσότερες πληροφορίες σχετικά μπορεί να βρει κανείς στο άρθρο στο physicsgg, Εξωγήινοι πολιτισμοί τύπου II και το άστρο KIC 8462852, και στα άρθρο στο Centauri Dreams, KIC 8462852: Cometary Origin of an Unusual Light Curve?, What’s Next for Unusual KIC 8462852?, και KIC 8462852: The SETI Factor. Όπως και να έχει, αναμένονται ενδιαφέρουσες εξελίξεις, ειδικότερα αν εγκριθούν οι έξτρα παρατηρήσεις που ζητούν οι επιστήμονες προκειμένου να αποκτήσουν περισσότερες πληροφορίες για το συγκεκριμένο άστρο.


Προσωπικά πάντως βρίσκω πολύ ενδιαφέρουσα τη συγκυρία, την ώρα που φαίνεται να αμφισβητείται η ανάγκη εξερεύνησης του ηλιακού συστήματος και εξάπλωσης πέρα από τα όρια του πλανήτη μας.
Εγώ έχω μόνο ένα σχόλιο να κάνω σχετικά...




Update (21/10/15 #BackToTheFuture Day): Ο Jason Wright είχε ένα ενδιαφέρον tweet σήμερα σχετικά με της καμπύλες φωτός που περιμένει κανείς από την διέλευση ενός αντικειμένου μπροστά από τον φωτεινό δίσκο ενός άστρου,


Το tweet αυτό παραπέμπει στο tweet του Hugh Osborn, ο οποίος έφτιαξε στο Git έναν κώδικα που υπολογίζει καμπύλες φωτός από την διέλευση αντικειμένων διαφόρων σχημάτων μπροστά από τον φωτεινό δίσκο ενός άστρου,



Νομίζω ότι μπορεί κανείς να δοκιμάσει να εισάγει διαφορετικά σχήματα και να παίξει με το αποτέλεσμα.

Παρασκευή 13 Φεβρουαρίου 2015

Interstellar papers

Σήμερα, μερικούς μήνες μετά την πρεμιέρα της ταινίας Interstellar, ανέβηκαν στο arXiv δύο εργασίες που έχουν ως αντικείμενο την μελέτη και προσομοίωση της κίνησης του φωτός στο χωροχρόνο γύρω από μια περιστρεφόμενη μαύρη τρύπα και μία σκουλικότρυπα, όπως είναι αυτές που εμφανίζονται στην ταινία.

Οι εργασίες λοιπόν είναι οι:
Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar
Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this we developed a code called DNGR (Double Negative Gravitational Renderer) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering.
This paper has four purposes: (i) To describe DNGR for physicists and CGI practitioners . (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR. There are no new astrophysical insights in this accretion-disk section of the paper, but disk novices may find it pedagogically interesting, and movie buffs may find its discussions of Interstellar interesting.
και
Visualizing Interstellar's Wormhole
Christopher Nolan's science fiction movie Interstellar offers a variety of opportunities for students in elementary courses on general relativity theory. This paper describes such opportunities, including: (i) At the motivational level, the manner in which elementary relativity concepts underlie the wormhole visualizations seen in the movie. (ii) At the briefest computational level, instructive calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding diagrams for the three-parameter wormhole that was used by our visual effects team and Christopher Nolan in scoping out possible wormhole geometries for the movie. (iii) Combining the proper reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing map backward in time from a camera's local sky to a wormhole's two celestial spheres. (iv) Implementing this map, for example in Mathematica, Maple or Matlab, and using that implementation to construct images of what a camera sees when near or inside a wormhole. (v) With the student's implementation, exploring how the wormhole's three parameters influence what the camera sees---which is precisely how Christopher Nolan, using our implementation, chose the parameters for Interstellar's wormhole. (vi) Using the student's implementation, exploring the wormhole's Einstein ring, and particularly the peculiar motions of star images near the ring; and exploring what it looks like to travel through a wormhole.

Και στις δύο εργασίες δίνεται έμφαση στην παιδαγωγική παρουσίαση των θεμάτων, ενώ η πρώτη έχει και μια σχετική ιστορική εισαγωγή στο θέμα της οπτικοποίησης μιας περιστρεφόμενης μαύρης τρύπας.
Νομίζω ότι κανείς θα ευχαριστηθεί και τις δύο εργασίες.

Καλή διασκέδαση.

Τρίτη 11 Νοεμβρίου 2014

"Interstellar"

Interstellar λοιπόν. Είναι αρκετά χρόνια που την περιμέναμε αυτή την ταινία, ειδικότερα επειδή ο Kip Thorne ήταν μπλεγμένος. Η ταινία λοιπόν κυκλοφόρησε και μπορεί να βρει κανείς πολλές κριτικές και διάφορους σχολιασμούς της.


Παρακάτω παραθέτω ένα infographic από το space.com το οποίο περιγράφει κάποια επιστημονικά σημεία της ταινίας. Εγώ θα σταθώ λίγο στα σχετικά με τις μαύρες τρύπες, χωρίς να μπω σε λεπτομέρειες της πλοκής.

Diagrams explain the physics concepts of
Source SPACE.com: All about our solar system, outer space and exploration.

Φυσικά ένα από τα πρώτα πράγματα που χτυπάνε στο μάτι και που μπορεί να δει κανείς και στα τρέιλερ της ταινίας, είναι η απεικόνιση της μαύρης τρύπας και του δίσκου της. Η ιστορία της απεικόνισης ενός δίσκου προσαύξησης γύρω από μια μαύρη τρύπα είναι παλιά και πάει μέχρι την δεκαετία του 70, όπως μπορεί να δει κανείς και από την δουλειά του Luminet (1979A&A....75..228L)

Στα σχήματα μπορεί να δει κανείς την εικόνα που δημιουργούν στο οπτικό πεδίο του παρατηρητή οι διάφορες περιοχές του δίσκου σε διαφορετικές ακτίνες. Όπως και να έχει πάντως, η απεικόνιση για τις ανάγκες της ταινίας ξεπερνά κατά πολύ το απλό ray tracing που κάνουμε συνήθως για επιστημονικούς σκοπούς και από ότι φαίνεται προέκυψε από την έξτρα λεπτομέρεια της ανάλυση και ένα ενδιαφέρον καινούριο αποτέλεσμα που θα δημοσιευτεί στο Classical and Quantum Gravity.

Ας δούμε όμως λίγο την ίδια την μαύρη τρύπα, τον πλανήτη σε τροχιά γύρω από αυτή και την συζήτηση γύρω από τα σχετικά με τη διαστολή του χρόνου.

Το infographic λοιπόν λέει ότι η μαύρη τρύπα είναι μια υπερμεγέθης μαύρη τρύπα με μάζα περίπου 100 εκατομμύρια ηλιακές μάζες, η οποία περιστρέφεται στο 99.8% της ταχύτητας του φωτός. Με το τελευταίο δεν ξέρω τι εννοεί και δεν βγάζει και πολύ νόημα, οπότε θα υποθέσω ότι εννοεί πως περιστρέφεται με το 0.998 της μέγιστης περιστροφής που μπορεί να έχει μια μαύρη τρύπα, η οποία εκφράζεται από το λόγο της στροφορμής της προς την μάζα της, $$\reverse\opaque a=J/M $$, που μπορεί να είναι το πολύ ίση με την ίδια την μάζα, $$\reverse\opaque a=M $$. Εναλλακτικά αυτά μπορούν να εκφραστούν με την βοήθεια της παραμέτρου περιστροφής, $$\reverse\opaque j=J/M^2 $$, η οποία έχεις ως μέγιστη θεωρητική τιμή την τιμή j=1. Έτσι λοιπόν, η τιμή j=0.998, που τώρα βγάζει νόημα, είναι το λεγόμενο όριο Thorne για την περιστροφή μιας μαύρης τρύπας που μπορεί να βρει κανείς στην φύση και η οποία είναι σε ισορροπία με το περιβάλλον της (η περιστροφή που κερδίζει από την στροφορμή που πέφτει στην μαύρη τρύπα λόγω της πρόσπτωσης ύλης είναι ίση με την στροφορμή που χάνει από τις διάφορες διαδικασίες που συμβαίνουν στην εργόσφαιρά της). Για μια μαύρη τρύπα, υπάρχουν κάποιες χαρακτηριστικές ποσότητες. Μία από αυτές είναι η θέση του ορίζοντα γεγονότων. Για μια περιστρεφόμενη μαύρη τρύπα λοιπόν, η θέση του ορίζοντα δίνεται από την έκφραση $$\reverse\opaque R_h=M+\sqrt{M^2-a^2} $$, όπου βλέπουμε ότι στην περίπτωση που δεν έχουμε περιστροφή (α=0) έχουμε το γνωστό αποτέλεσμα για την ακτίνα Schwarzschild, ενώ στην περίπτωση όπου έχουμε την μέγιστη περιστροφή (α=Μ), ο ορίζοντας είναι σε ακτίνα R=M, όπως δείχνει το παρακάτω σχήμα (ο κατακόρυφος άξονας μετρά την ακτίνα σε μονάδες μάζας της μαύρης τρύπας, ενώ η μία Ηλιακή μάζα είναι περίπου 1.5km)

Για την συγκεκριμένη μαύρη τρύπα με j=0.998 λοιπόν, ο ορίζοντας είναι σε ακτίνα περίπου ίση με 1.063Μ ή 156.98 εκατομμύρια km.
Μια άλλη σημαντική ακτίνα γύρω από μια μαύρη τρύπα, είναι η ακτίνα της τελευταίας ευσταθούς κυκλικής τροχιάς (ISCO). Αυτή η ακτίνα είναι πολύ σημαντική γιατί σηματοδοτεί την περιοχή πέρα από την οποία δεν μπορεί να έχει κανείς ευσταθείς κυκλικές τροχιές γύρω από μια μαύρη τρύπα, ένα φαινόμενο που είναι χαρακτηριστικό των τροχιών στη γενική σχετικότητα. Έτσι για παράδειγμα, δεν μπορεί να έχει κανείς πλανήτες ή άλλα σώματα σε τροχιά γύρω από μια μαύρη τρύπα στην περιοχή μέσα από το ISCO, ενώ η θέση του ISCO είναι και η περιοχή μέχρι την οποία μπορεί να εκτείνεται ένας δίσκος προσαύξησης γύρω από μια μαύρη τρύπα. Όπως και ο ορίζοντας, έτσι και η θέση του ISCO εξαρτάται από την περιστροφή της μαύρης τρύπας, και η εξάρτηση δίνεται από το παρακάτω σχήμα



όπου βλέπουμε ότι για μια μη περιστρεφόμενη μαύρη τρύπα το ISCO είναι στα 6Μ, ενώ για μια μαύρη τρύπα με μέγιστη περιστροφή είναι στο 1Μ. Έτσι, για j=0.998, η θέση του ISCO είναι στα 1.23698Μ που είναι περίπου 182.6 εκατομμύρια km.

Στο infographic μπορεί να δει κανείς ότι γύρω από την μαύρη τρύπα υπάρχει ένας πλανήτης που περιστρέφεται σε πολύ κοντινή τροχιά, τόσο κοντινή ώστε η βαρυτική διαστολή χρόνου να είναι τέτοια που μία ώρα στην τροχιά του πλανήτη να αντιστοιχεί σε 7 χρόνια για έναν μακρινό παρατηρητή. Αυτό είναι πολύ, αφού μιλάμε για έναν πολλαπλασιαστικό παράγοντα της τάξης του 61000, και αυτό ακριβώς αποτέλεσε αντικείμενο συζήτησης για το πόσο ρεαλιστικό είναι ένα τέτοιο σενάριο. Το ερώτημα λοιπόν είναι, μπορεί μαι τέτοια μαύρη τρύπα να έχει έναν πλανήτη σε τέτοια τροχιά ώστε να υπάρχει αυτή η διαφορά στον χρόνο; Και η απάντηση είναι όχι, όπως μπορεί να δει κανείς στο παρακάτω σχήμα. Το σχήμα δείχνει τη θέση του ISCO (πράσινη γραμμή), την τιμή του παράγοντα διαστολής του χρόνου που θέλουμε (κόκκινη γραμμή) και την διαστολή του χρόνου σε κυκλικές τροχιές γύρω από την μαύρη τρύπα για διαφορετικές ακτίνες (μπλε γραμμή)



Όπως μπορεί να δει λοιπόν κανείς, στην θέση του ISCO η διαστολή είναι της τάξης του 10 και αυτό είναι το καλύτερο που θα μπορούσε να έχει κανείς σε αυτή την περίπτωση, αφού δεν υπάρχουν ευσταθείς τροχιές πιο μέσα. Θα μπορούσε όμως να έχει διαφύγει κάτι τόσο σημαντικό από τον Kip Thorne; Φυσικά και όχι. Πράγματι στο βιβλίο που κυκλοφόρησε μαζί με την ταινία και έχει τίτλο "The science of Interstellar", ένα αντίτυπο του οποίου μπόρεσα να ξεφυλλίσω προκειμένου να ξεκαθαρίσω αυτό το σημείο, ο Kip περιγράφει τις ιδιότητες της μαύρης τρύπας και εκεί λέει ότι προκειμένου να πετύχει την διαστολή που ήθελε για τους σκοπούς της ταινίας του ο Νόλαν, αναγκάστηκε να υποθέσει μια μαύρη τρύπα με περιστροφή $$\reverse\opaque j=1-10^{-14} $$, δηλαδή πρακτικά με μέγιστη περιστροφή. Σε αυτή την περίπτωση, ουσιαστικά η ακτίνα του ορίζοντα όπως και η ακτίνα του ISCO είναι πρακτικά ίσες με 1Μ ή 147.65 εκατομμύρια km (που είναι μόλις μικρότερες από μία αστρονομική μονάδα, όσο είναι δηλαδή και η ακτίνα της τροχιάς της Γης, όπως δείχνει το infographic). Υπάρχει λοιπόν σ'αυτή την περίπτωση ακτίνα που να μπορεί να έχει την ζητούμενη διαστολή του χρόνου; Η απάντηση τώρα είναι ναι, και η ακτίνα αυτή είναι περίπου στο 1.00004Μ, δηλαδή απέχει από τον ορίζοντα περίπου 5900km.

Και εδώ ερχόμαστε στο άλλο θέμα που έχει προκαλέσει συζητήσεις, τις παλιρροϊκές δυνάμεις από την μαύρη τρύπα. Οι παλιρροϊκές δυνάμεις που θα νιώθει ένα σώμα σε κάποια απόσταση από την μαύρη τρύπα ουσιαστικά έχουν σχέση με την απόκλιση δυο γειτονικών γεωδεσιακών τροχιών. Το μέγεθος που εκφράζει αυτές τις αποκλείσεις είναι ο τανυστής του Riemann. Αν μιλάγαμε για ένα αντικείμενο που θα βρισκόταν στατικό σε κάποια απόσταση από την μαύρη τρύπα (σε σταθερή ακτίνα χωρίς να περιστρέφετε γύρω της δηλαδή) τότε θα είχαμε παλίρροιες σαν αυτές που έχουμε στη Γη εξαιτίας της Σελήνης (που κινείται πολύ αργά και πρακτικά μπορεί να θεωρηθεί ακίνητη) που θα οφείλονταν στα στοιχεία του τανυστή του Riemann όπως είναι το $$\reverse\opaque R^r_{ttr}=-\frac{M (-3 a^2 + 4 M r - 2 r^2)}{r^5} $$ (το συγκεκριμένο εκφράζει την επιτάχυνση με την οποία αυξάνει η ακτινική απόσταση δυο τροχιών που έχουν μοναδιαία ακτινική απόσταση). Για την εκτίμηση όλων των συνιστωσών της παλιρροϊκής δύναμης θέλουμε ακόμα δύο στοιχεία του τανυστή του Riemann, τα οποία έχουν παρόμοια συναρτησιακή μορφή. Με λίγα λόγια, για την περίπτωσή μας, για α=Μ και r=M η παλιρροϊκή επιτάχυνση θα είναι ανάλογη του, $$\reverse\opaque \frac{d^2r}{dt^2}\propto\frac{1}{M^2}D $$, δηλαδή της διαμέτρου του αντικειμένου διαιρεμένο με το τετράγωνο της μάζας της μαύρης τρύπας. Ότι και να είναι όμως η διάμετρος του αντικειμένου/πλανήτη, σίγουρα θα είναι πολύ μικρότερη από το τετράγωνο των 147.65 εκατομμυρίων χιλιομέτρων, οπότε δεν θα είναι κάτι καταστροφικό. Το αντικείμενό μας όμως δεν είναι στατικό. Περιστρέφεται σε κυκλική τροχιά γύρω από την μαύρη τρύπα. Αυτό σημαίνει ότι θα έχουμε ακόμα μία συνεισφορά από διατμητικές τάσεις στο αντικείμενο. Η συνεισφορά αυτών των τάσεων θα είναι όμως της ίδιας τάξης μεγέθους, δηλαδή και πάλι $$\reverse\opaque \propto\frac{1}{M^2}D $$. Άρα, με λίγα λόγια, οι παλιρροϊκές δυνάμεις δεν περιμένουμε να προκαλέσουν κάποιο πρόβλημα, όπως ανησυχούν κάποιοι.

Αλλά, υπάρχει ένα θέμα, και αυτό είναι το ότι η τροχιά που μας ενδιαφέρει απέχει από τον ορίζοντα περίπου 5900km. Η ακτίνα της Γης είναι 6371km, οπότε αν ήταν η Γη σε εκείνη την τροχιά, θα είχε ένα μέρος της μέσα από τον ορίζοντα. Και εκεί είναι που τα πράγματα γίνονται περίεργα (How to mine energy from a black hole, Mining Energy from a Black Hole by Strings, Tensile Strength and the Mining of Black Holes).
Δεν ξέρω αν αυτό το θέμα το σχολιάζει ο Thorne.

Τετάρτη 26 Μαρτίου 2014

Neutron stars in general relativity: simpler than expected


Τον τελευταίο καιρό υπάρχουν μερικές ενδιαφέρουσες εξελίξεις στον χώρο της φυσικής των αστέρων νετρονίων και των συμπαγών αντικειμένων γενικότερα. Έχουν αρχίσει να αναδεικνύονται κάποιες ιδιότητες αυτών των αντικειμένων που αναμένεται να έχουν σημαντικές αστροφυσικές προεκτάσεις και ίσως μας βοηθήσουν να μετρήσουμε κάποια από τα χαρακτηριστικά τους που μέχρι τώρα ήταν πολύ δύσκολο να μετρηθούν.
Η πρόσφατη εργασία στην οποία παρουσιάζονται τα αποτελέσματα αυτά, δημοσιεύεται στο περιοδικό Physical Review Letters με τίτλο, Effectively universal behavior of rotating neutron stars in general relativity makes them even simpler than their Newtonian counterparts (Phys. Rev. Lett. 112, 121101 (2014), arXiv:1311.5508), και σε γενικές γραμμές η εικόνα που φαίνεται να προκύπτει περιγράφεται περιληπτικά σε αυτή την ανακοίνωση από τη SISSA.


Η εργασία αφορά την μελέτη της συμπεριφοράς των σχετικιστικών πολυπολικών ροπών του χωροχρόνου γύρω από τους αστέρες νετρονίων και αυτό που δείχνει είναι ότι αυτές οι ροπές δεν φαίνεται να είναι ανεξάρτητες μεταξύ τους και φαίνεται να υπάρχει μια σχέση που συνδέει τις ροπές ανώτερης τάξης με τις πρώτες μη μηδενικές ροπές, και ταυτόχρονα φαίνεται ότι η σχέση που συνδέει τις ροπές μεταξύ τους είναι σχεδόν ανεξάρτητη από την καταστατική εξίσωση που επιλέγει κανείς για να περιγράψει την πυρηνική ύλη από την οποία αποτελείται ο αστέρας νετρονίων.
Αλλά ας τα πάρουμε με τη σειρά.

==== No-Hair Theorem ====

Το no-hair theorem για τις μαύρες τρύπες αυτό που λέει ουσιαστικά είναι ότι οι ιδιότητες τους, δηλαδή κατά βάση οι ιδιότητες του χωροχρόνου, εξαρτώνται από λίγες βασικές παραμέτρους και όλες οι άλλες ιδιότητες που μπορεί να σχετίζονταν αρχικά με την ύλη από της οποίας την κατάρρευση προέκυψε η μαύρη τρύπα, χάνονται μετά το σχηματισμό της. Γενικά, οι βασικές αυτές παράμετροι είναι η μάζα της μαύρης τρύπας, η στροφορμή της και το φορτίο που μπορεί να έχει, και τίποτα άλλο (no-hair). Σε αστροφυσικό επίπεδο, το φορτίο είναι γενικά μικρού ενδιαφέροντος, οπότε ασχολούμαστε ουσιαστικά μόνο με τις δύο πρώτες, δηλαδή τη μάζα και τη στροφορμή. Αυτό σημαίνει ότι όλες οι ιδιότητες μιας μαύρης τρύπας εξαρτώνται τελικά μόνο από τη μάζα της και την στροφορμή της.


==== Σχετικιστικές πολυπολικές ροπές ====

Τις πολυπολικές ροπές μπορεί να τις έχει ακούσει κανείς στον ηλεκτρομαγνητισμό, όπου μιλάμε για το πολυπολικό ανάπτυγμα του ηλεκτρικού ή του μαγνητικού πεδίου. Στην ουσία το πολυπολικό ανάπτυγμα είναι ένας τρόπος για να γράψουμε ένα περίπλοκο πεδίο που έχει προκύψει από μια περίπλοκη κατανομή φορτίου ή ρεύματος σαν συνδυασμό πιο θεμελιωδών συνιστωσών.
Στον ηλεκτρομαγνητισμό τα πράγματα είναι σχετικά απλά, γιατί ισχύει η αρχή της επαλληλίας και τα πράγματα είναι γραμμικά και έτσι όταν προσθέτει κανείς δύο λύσεις των εξισώσεων, αυτό που παίρνει είναι και πάλι λύση που σημαίνει ότι τελικά μπορεί κανείς με πολύ καθαρό τρόπο να ξεχωρίσει αυτές τις θεμελιώδεις συνιστώσες. Στην βαρύτητα τα πράγματα είναι πιο περίπλοκα.

Οι εξισώσεις της γενικής σχετικότητας είναι μη γραμμικές και δεν μπορεί κανείς να φτιάχνει λύσεις των εξισώσεων απλά προσθέτοντας άλλες λύσεις. Αυτό σημαίνει ότι δεν μπορεί να κάνει κανείς ακριβώς την ίδια δουλειά που κάνει στον ηλεκτρομαγνητισμό. Παρόλα αυτά υπάρχει τρόπος να ορισθούν Σχετικιστικές πολυπολικές ροπές οι οποίες είναι τελικά οι σχετικιστικές γενικεύσεις των ηλεκτρομαγνητικών ροπών.
Έτσι, ένας δεδομένος χωρόχρονος μπορεί να χαρακτηριστεί από ένα φάσμα πολυπολικών ροπών. Για παράδειγμα, όταν έχουμε έναν σφαιρικά συμμετρικό χωρόχρονο (την γεωμετρία Schwarzschild για παράδειγμα) που δημιουργείται γύρω από έναν αστέρα που δεν περιστρέφεται, τότε αυτός ο χωρόχρονος χαρακτηρίζεται από μία μόνο ροπή, το μονόπολο, δηλαδή τη μάζα του αστέρα. Επειδή ή βαρύτητα στη γενική σχετικότητα έχει πολλές ομοιότητες με τον ηλεκτρομαγνητισμό, στη σχετικότητα έχουμε δύο είδη ροπών, τις ροπές μάζας που είναι τα ανάλογα των ροπών του ηλεκτρικού πεδίου και έχουμε και τις ροπές της στροφορμής που είναι τα ανάλογα των μαγνητικών ροπών που δημιουργούνται από ρεύματα (στη Νευτώνεια βαρύτητα έχουμε μόνο ροπές μάζας γιατί η Νευτώνεια βαρύτητα είναι σαν την ηλεκτροστατική). Έτσι, αν έχουμε μία περιστρεφόμενη μαύρη τρύπα, δηλαδή μια μαύρη τρύπα τύπου Kerr, τότε θα έχουμε τη μάζα της μαύρης τρύπας, το μονόπολο, και θα έχουμε και την στροφορμή της μαύρης τρύπας, που είναι το δίπολο της περιστροφής και αντιστοιχεί ας πούμε στο μαγνητικό δίπολο που δημιουργεί ένα κυκλικό ρεύμα. Αλλά εξαιτίας της μη γραμμικότητας της βαρύτητας στη γενική σχετικότητα, οι ροπές δεν τελειώνουν με τη μάζα και τη στροφορμή.
Ο χωροχρόνος της μαύρης τρύπας τύπου Kerr έχει ένα άπειρο φάσμα από πολυπολικές ροπές, οι οποίες όμως εξαρτώνται μόνο από δύο παραμέτρους, την μάζα $$\reverse\opaque M $$ και την στροφορμή $$\reverse\opaque J$$. Έτσι, αν ορίσουμε την παράμετρο του Kerr, $$\reverse\opaque a\equiv J/M $$, οι ροπές της περιστρεφόμενης μαύρης τρύπας είναι,
$$\reverse\opaque P_n=(ia)^n M$$,
όπου οι πραγματικές ροπές αντιστοιχούν στις ροπές της μάζας (που συμβολίζονται και ως $$\reverse\opaque M_n$$) και οι φανταστικές ροπές αντιστοιχούν στις ροπές της περιστροφής (που συμβολίζονται και ως $$\reverse\opaque S_n$$). Το γεγονός ότι όλες οι ροπές εξαρτώνται μόνο από την μάζα και τη στροφορμή είναι ουσιαστικά άλλη μία έκφανση του no-hair theorem για τις περιστρεφόμενες μαύρες τρύπες. Έτσι, οι πρώτες μη μηδενικές ροπές μιας περιστρεφόμενης μαύρης τρύπας θα είναι,
$$\reverse\opaque M_0=M$$,
$$\reverse\opaque S_1= aM$$,
$$\reverse\opaque M_2= -a^2 M$$,
$$\reverse\opaque S_3= -a^3 M$$,
$$\reverse\opaque M_4= a^4 M$$,
$$\reverse\opaque S_5= a^5 M$$, κλπ...


==== Σχετικιστικές ροπές των αστέρων νετρονίων ====

Και ερχόμαστε τώρα στους αστέρες νετρονίων και τα αποτελέσματα που παρουσιάζονται στην εργασία.

Οι αστέρες νετρονίων είναι συνήθως το αποτέλεσμα της κατάρρευσης ενός άστρου, που συμβαίνει όταν αυτό έχει πλέον εξαντλήσει όλο το πυρηνικό καύσιμο στο εσωτερικό του, με αποτέλεσμα η πίεση στο εσωτερικό του να μην μπορεί πια να αντισταθεί στην βαρύτητα. Το αποτέλεσμα της κατάρρευσης είναι κάποια στιγμή τα εξωτερικά στρώματα του άστρου να εκραγούν ως ένα θεαματικό supernova, ενώ ο πυρήνας του άστρου συμπιέζεται σε τέτοιο βαθμό που τα ηλεκτρόνια αρχίζουν να ενώνονται με τα πρωτόνια σχηματίζοντας νετρόνια, ώσπου το τελικό αντικείμενο να είναι μία υπέρ συμπαγής σφαίρα που αποτελείται κυρίως από νετρόνια και έχει ακτίνα της τάξης των 10km. Ένας αστέρας νετρονίων με λίγα λόγια, είναι σαν ένας τεράστιος ατομικός πυρήνας, όπου η δύναμη που τον συγκρατεί και τον διαμορφώνει είναι η δύναμη της βαρύτητας.

Για να περιγράψει λοιπόν κανείς έναν αστέρα νετρονίων και το χωροχρόνο γύρω από αυτόν, χρειάζεται να λύσεις τις εξισώσεις πεδίου της γενικής σχετικότητας, οι οποίες περιγράφουν το πως διαμορφώνεται η γεωμετρία και άρα η βαρύτητα από την ύλη, τις σχετικιστικές υδροδυναμικές εξισώσεις, οι οποίες περιγράφουν το πως κινείται αυτή η ύλη, δηλαδή το ρευστό από το οποίο αποτελείται ο αστέρας, και τέλος χρειάζεται και μια καταστατική εξίσωση για την ύλη, η οποία έχει τις πληροφορίες για τις θερμοδυναμικές ιδιότητες του υλικού από το οποίο αποτελείται ο αστέρας και πιο συγκεκριμένα περιγράφει το πως συμπεριφέρεται η πίεση του ρευστού δεδομένης της πυκνότητάς του. Το σύνολο λοιπών αυτών των εξισώσεων πρέπει να λυθεί παντού, μέσα στο άστρο και έξω από αυτό, για να πάρει κανείς τελικά την περιγραφή της δομής του αστέρα νετρονίων και του χωροχρόνου γύρω από αυτόν.

Το σύστημα λοιπόν αυτών των εξισώσεων είναι αρκετά περίπλοκο όταν μιλάμε για περιστρεφόμενους αστέρες νετρονίων και η λύση του μπορεί να γίνει μόνο με αριθμητικές μεθόδους. Πέρα όμως από την περιπλοκότητα των εξισώσεων πεδίου και των εξισώσεων της υδροδυναμικής, υπάρχει και μία ακόμα δυσκολία στο όλο πρόβλημα, και αυτή είναι ότι η καταστατική εξίσωση της ύλης στο εσωτερικό των αστέρων νετρονίων, δεν είναι πολύ καλά γνωστή.

Στο εσωτερικό των αστέρων νετρονίων, υπάρχουν περιοχές όπου η πυκνότητα ξεπερνά την πυκνότητα που βρίσκει κανείς στο εσωτερικό των ατομικών πυρήνων και οι οι ιδιότητες της ύλης σε αυτές τις πυκνότητες δεν έχει διερευνηθεί ακόμα επαρκώς στο εργαστήριο, ενώ ακόμα και η θεωρητική περιγραφή είναι αρκετά δύσκολη και περίπλοκη. Ένας από τους στόχους του LHC είναι να διερευνήσει τις ιδιότητες της ύλης κοντά σε τέτοιες πυκνότητες. Έτσι λοιπόν, με βάση διάφορα θεωρητικά μοντέλα, υπάρχει ένα πλήθος από καταστατικές εξισώσεις που έχουν προταθεί για να περιγράψουν το εσωτερικό των αστέρων νετρονίων. Και αυτή η ποικιλία έχει ως αποτέλεσμα αρκετή αβεβαιότητα στις μακροσκοπικές ιδιότητες των αστέρων νετρονίων, όπως είναι η μάζα τους και η ακτίνα τους για παράδειγμα.


Το παραπάνω σχήμα δείχνει αυτό ακριβώς. Οι διαφορετικές καμπύλες αντιστοιχούν σε οικογένειες μη περιστρεφόμενων αστέρων νετρονίων, οι οποίες έχουν κατασκευαστεί χρησιμοποιώντας διαφορετικές ρεαλιστικές καταστατικές εξισώσεις, όπου αυτό που αλλάζει κατά μήκος της κάθε καμπύλης είναι η πυκνότητα του υλικού στο κέντρο του αστέρα νετρονίων. Βλέπουμε λοιπόν ότι οι διαφορετικές καταστατικές εξισώσεις οδηγούν σε άστρα με διαφορετικές μάζες και ακτίνες (ο οριζόντιος άξονας είναι η ακτίνα σε χιλιόμετρα και ο κατακόρυφος είναι η μάζα σε μάζες Ήλιου).

Από το παραπάνω σχήμα φαίνεται ακόμα ότι μια πιθανή μέτρηση της μάζας και της ακτίνας αρκετών αστέρων νετρονίων, θα μπορούσαν να μας δώσουν μια εκτίμηση για το ποια ή ποιες καταστατικές εξισώσεις από αυτές που έχουν προταθεί, είναι πιο κοντά στην πραγματικότητα και μπορεί να περιγράψει με καλύτερη ακρίβεια την ύλη στο εσωτερικό των αστέρων νετρονίων.

Ας επιστρέψουμε όμως στην κατασκευή των αστέρων νετρονίων. Όπως είπαμε παραπάνω, αυτό που πρέπει να κάνει κανείς είναι να λύσει τις εξισώσεις της βαρύτητας (εξισώσεις πεδίου) και τις εξισώσεις του ρευστού για μια δεδομένη καταστατική εξίσωση, για να πάρει τελικά έναν αστέρα νετρονίων που να έχει κάποια δεδομένα χαρακτηριστικά (μάζα και περιστροφή). Από την όλη διαδικασία αυτό που παίρνει κανείς τελικά είναι το ποια είναι η κατανομή της ύλης μέσα στον αστέρα και το ποια είναι η γεωμετρία του χωροχρόνου τόσο μέσα όσο και έξω από τον αστέρα.


(Το σχήμα δείχνει την κατανομή της πυκνότητας ενός γρήγορα περιστρεφόμενου αστέρα νετρονίων. Ο αστέρας είναι πεπλατυσμένος λόγω περιστροφής.)


Όπως συζητήσαμε και παραπάνω, ο χωροχρόνος γύρω από τον αστέρα νετρονίων, μπορεί να χαρακτηριστεί με βάση τις σχετικιστικές πολυπολικές ροπές. Και εδώ αρχίζουν να συμβαίνουν τα ενδιαφέροντα πράγματα. Αν υπολογίσει κανείς τις πρώτες πολυπολικές ροπές για τον χωροχρόνο γύρω από τον αστέρα νετρονίων, θα παρατηρήσει ότι οι ροπές έχουν την παρακάτω μορφή,
$$\reverse\opaque M_0=M$$,
$$\reverse\opaque S_1= aM$$,
$$\reverse\opaque M_2= -\alpha(EOS) a^2 M$$,
$$\reverse\opaque S_3= -\beta(EOS) a^3 M$$,
δηλαδή συμπεριφέρονται σαν τις ροπές μιας περιστρεφόμενης μαύρης τρύπας, με τη διαφορά ότι υπάρχουν οι παράμετροι α και β που είναι μεγαλύτεροι της μονάδας, σε αντίθεση με τις μαύρες τρύπες όπου είναι 1. Αυτή η ιδιότητα των ροπών των αστέρων νετρονίων είχε παρατηρηθεί παλαιότερα για το $$\reverse\opaque M_2$$ μόνο και πιο πρόσφατα παρατηρήθηκε και για το οκτάπολο της περιστροφής $$\reverse\opaque S_3$$ [PRL 108, 231104 (2012)].
Το γεγονός ότι οι σχετικιστικές πολυπολικές ροπές των αστέρων νετρονίων συμπεριφέρονται ως προς την περιστροφή με τον ίδιο τρόπο όπως οι αντίστοιχες ροπές των περιστρεφόμενων μελανών οπών είναι κάτι που δεν ήταν αναμενόμενο. Στη Νευτώνεια βαρύτητα και για την περίπτωση τουλάχιστον των σφαιροειδών Maclaurin για τα οποία έχουμε αναλυτικές εκφράσεις, αν και στο όριο της αργής περιστροφής παρατηρείται αυτή η συμπεριφορά, όσο αυξάνει η περιστροφή η εικόνα αρχίζει και διαφοροποιείται.

Τα πράγματα όμως γίνονται και πιο ενδιαφέροντα.


==== Συσχέτιση των ροπών ανεξάρτητη της καταστατικής ====

Όπως είπαμε και παραπάνω, υπάρχει αρκετή αβεβαιότητα ως προς το ποια είναι η "σωστή" καταστατική που περιγράφει το εσωτερικό των αστέρων νετρονίων. Και αυτή η αβεβαιότητα μεταφράζεται σε μια αρκετά μεγάλη διαφοροποίηση από καταστατική σε καταστατική των εξωτερικών ιδιοτήτων ενός αστέρα νετρονίων. Και αυτό με τη σειρά του δημιουργεί πρόβλημα στην μοντελοποίηση των αστέρων νετρονίων, όπως όταν θα θέλαμε για παράδειγμα να τους χρησιμοποιήσουμε ως εργαστήρια ισχυρής βαρύτητας προκειμένου να ελέγξουμε τις προβλέψεις της θεωρίας της Σχετικότητας. Η μέχρι τώρα κατάσταση λοιπόν δεν καλλιεργούσε και πολλές ελπίδες ως προς την χρήση των αστέρων νετρονίων για τέτοιες εφαρμογές.

Από ότι φαίνεται όμως η κατάσταση δεν είναι τόσο τραγική και αυτό που δείχνει η συγκεκριμένη εργασία που δημοσιεύεται στο Phys.Rev.Lett. είναι ότι τελικά φαίνεται να υπάρχει τρόπος να παρακαμφθούν οι ιδιαιτερότητες των καταστατικών εξισώσεων και τα αστέρια νετρονίων να περιγραφούν, ως προς τις κατάλληλες παραμέτρους, με έναν ενιαίο τρόπο. Το κλειδί είναι και πάλι οι σχετικιστικές πολυπολικές ροπές.

Αυτό που συμβαίνει λοιπόν είναι ότι, εκτός από το γεγονός ότι οι πολυπολικές ροπές έχουν την απλή μορφή που έχουν και οι ροπές των μελανών οπών, επιπλέον οι συντελεστές α,β που εμφανίζονται στη σχέση των ροπών με την περιστροφή δεν είναι ανεξάρτητοι μεταξύ τους και όχι μόνο αυτό οι σχέσεις που τους συνδέουν είναι ανεξάρτητες από την καταστατική εξίσωση που χρησιμοποιεί κανείς. Πιο συγκεκριμένα, η εργασία δείχνει ότι οι συντελεστές α και β συνδέονται με μια σχέση της μορφής,
$$\reverse\opaque \sqrt[3]{\beta}\simeq B \left(\sqrt{\alpha}\right)^{2/3}$$,
όπου ο συντελεστής Β είναι ο ίδιος για όλες τις ρεαλιστικές καταστατικές εξισώσεις που χρησιμοποιήθηκαν για την κατασκευή των αστέρων νετρονίων. Αυτό μπορεί να το δει κανείς στο παρακάτω σχήμα.



Τα σημεία που φαίνονται στο σχήμα είναι τα ζευγάρια τιμών των παραμέτρων για κάθε άστρο που κατασκευάστηκε με τις διάφορες καταστατικές και για διάφορες περιστροφές. Το θεαματικό αποτέλεσμα είναι ότι η σχέση φαίνεται να είναι ανεξάρτητη της περιστροφής καταρχήν και κατά δεύτερο φαίνεται να είναι ανεξάρτητη της καταστατικής.

Το αποτέλεσμα αυτό σημαίνει ότι επί της ουσίας μπορεί να μιλήσει κανείς για μια περιγραφή που δεν εξαρτάται από την ακριβή γνώση μας για την καταστατική εξίσωση, η οποία είναι ο μεγάλος άγνωστος αυτή τη στιγμή.

Η παραπάνω ιδιότητα των αστέρων νετρονίων μπορεί να έχει πολλές ενδιαφέρουσες εφαρμογές. Για αρχή, επειδή οι σχετικιστικές πολυπολικές ροπές είναι παράμετροι που μπαίνουν στην περιγραφή του χωροχρόνου γύρω από τους αστέρες νετρονίων (Mon. Not. R. Astron. Soc. 429, 3007-3024 (2013)), το γεγονός ότι δεν είναι όλες αυτές οι παράμετροι ανεξάρτητες σημαίνει ότι μπορεί να φτιάξει κανείς χωρόχρονους για τους αστέρες νετρονίων που να εξαρτώνται στην πραγματικότητα από λιγότερες παραμέτρους. Επιπλέον, το ότι η σχέση ανάμεσα στα πολύπολα είναι ανεξάρτητη της καταστατικής εξίσωσης, σημαίνει ότι μπορεί κανείς να κατασκευάσει έναν χωρόχρονο για το εξωτερικό των αστέρων νετρονίων που και αυτός να είναι ανεξάρτητος της καταστατικής εξίσωσης. Αυτό μπορεί να έχει εφαρμογή στην μελέτη αστροφυσικών διαδικασιών στο περιβάλλον των αστέρων νετρονίων με τρόπο που να μην εξαρτάται από την καταστατική, παρακάμπτοντας έτσι αυτή την άγνωστη ποσότητα που μέχρι τώρα είναι από τους μεγαλύτερους παράγοντες αβεβαιότητας στη μελέτη αυτών των φαινομένων (ο άλλος είναι το μαγνητικό πεδίο).

Μια άλλη εφαρμογή, μπορεί να είναι ο έλεγχος εναλλακτικών θεωριών βαρύτητας. Τα παραπάνω αποτελέσματα ισχύουν στη γενική σχετικότητα. Κανείς όμως δεν μπορεί να πει ότι θα πρέπει να ισχύουν και στις εναλλακτικές θεωρίες βαρύτητας που μελετώνται σήμερα. Οπότε, μια ενδιαφέρουσα προοπτική είναι να ψάξει κανείς αν παρόμοιες σχέσεις ισχύουν και σε άλλες θεωρίες βαρύτητας. Αν υπάρχουν διαφοροποιήσεις, τότε μια πιθανή μέτρηση των πρώτων πολυπόλων θα μπορούσε να μας υποδείξει ποια θεωρία βαρύτητας είναι η σωστή.

Εδώ πρέπει να αναφέρουμε ότι τα αποτελέσματα της εργασίας στο Phys.Rev.Lett. έχουν ήδη επεκταθεί. Στην εργασία, "No-Hair Relations for Neutron Stars and Quark Stars: Relativistic Results" (arXiv:1403.6243 [gr-qc]), παρουσιάζονται τα αποτελέσματα και για την επόμενη πολυπολική ροπή, το $$\reverse\opaque M_4$$, η οποία φαίνεται να ακολουθεί την αντίστοιχη συμπεριφορά με το $$\reverse\opaque S_3$$. Συγκεκριμένα έχουμε ότι,
$$\reverse\opaque M_4= \gamma(EOS) a^4 M$$,
ενώ και σε αυτή την περίπτωση ο συντελεστής γ ακολουθεί μια σχέση περίπου της μορφής,
$$\reverse\opaque \sqrt[4]{\gamma}\simeq K \left(\sqrt{\alpha}\right)^{1}$$,
η οποία είναι η ίδια για όλες τις καταστατικές (όπου εδώ μπαίνουν στο παιχνίδι και τα αστέρια που αποτελούνται από quarks). Το παρακάτω σχήμα δείχνει μαζί σε λογαριθμική κλίμακα τις καμπύλες που ακολουθούν οι παράμετροι γ και β ως προς την παράμετρο α.



Οι σχέσεις αυτές ανάμεσα στους συντελεστές α,β και γ, μπορούν να εκφραστούν και ως σχέσεις ανάμεσα στα πολύπολα απευθείας. Έτσι θα έχουμε ότι,
$$\reverse\opaque S_3 \simeq M_2 S_1 M^{-1}$$, και
$$\reverse\opaque M_4 \simeq (M_2)^2 M^{-1}$$,
που είναι και ο λόγος για τον οποίο γίνεται αναφορά σε "No-Hair Relations" στον τίτλο της εργασίας, η ομοιότητα δηλαδή με τις αντίστοιχες σχέσεις για τις μαύρες τρύπες (όπου εδώ όμως παίζει και το τετράπολο εκτός από την στροφορμή). Στην τελευταία αυτή εργασία γίνεται και περαιτέρω συζήτηση της συμπεριφοράς αυτών των σχετικιστικών σχέσεων με κάποιες αντίστοιχες Νευτώνειες που μπορεί να υπολογίσει κανείς για Νευτώνεια άστρα.


==== Μέτρηση της καταστατικής εξίσωσης ====

Σε όλα τα παραπάνω, ο κοινός τόπος είναι ότι, με την κατάλληλη επιλογή παραμέτρων μπορεί να βγει η καταστατική εξίσωση από το παιχνίδι. Η εργασία στο Phys.Rev.Lett. κλείνει όμως και με μια ενδιαφέρουσα προοπτική που προκύπτει από την όλη διερεύνηση.

Μπορεί οι παράμετροι α,β και γ να σχετίζονται μεταξύ τους με τρόπο ανεξάρτητο της καταστατικής, οι τιμές που παίρνουν οι πολυπολικές ροπές όμως (το μέτρο τους, το μέγεθός τους) δεν είναι ανεξάρτητο. Και αυτό που προκύπτει συγκεκριμένα είναι ότι αν μετρήσει κανείς για παράδειγμα τις τρεις πρώτες ροπές, δηλαδή την μάζα, την στροφορμή και το τετράπολο της μάζας, τότε μπορεί να ξεχωρίσει (ανάλογα με την ακρίβεια που έχει) τις διαφορετικές καταστατικές. Αυτό φαίνεται στο παρακάτω σχήμα.



Αυτό που βλέπουμε στο σχήμα είναι τις διαφορετικές επιφάνειες που σχηματίζουν οι διαφορετικές καταστατικές (στην συγκεκριμένη περίπτωση είναι τρεις οι καταστατικές) στον χώρο των παραμέτρων, μάζα, στροφορμή ( j ) και τετράοπολο (ρίζα του α). Επειδή λοιπόν κάθε καταστατική σχηματίζει μια ξεχωριστή επιφάνεια, ουσιαστικά με διάφορες μετρήσεις των πολυπόλων των αστέρων νετρονίων θεωρητικά θα μπορούσαμε να δούμε ποια είναι η επιφάνεια που διαγράφεται σε αυτό το χώρο και άρα να δούμε ποια είναι τελικά η καταστατική εξίσωση των αστέρων νετρονίων.

Εν κατακλείδι, η προοπτική που ανοίγεται με λίγα λόγια είναι διπλή, έλεγχος της βαρύτητας από τη μία και μέτρηση της καταστατικής εξίσωσης από την άλλη.

Τρίτη 18 Μαρτίου 2014

Ποιος θυμάται τον Δημοσθένη Καζάνα;

Την ίδια εποχή που έγραφε και κατέθετε την εργασία του για τον πληθωρισμό ο Alan Guth (1980-1981), υπήρχαν και άλλοι ερευνητές που είχαν ανεξάρτητα την ίδια ιδέα.

Ένας από αυτούς ήταν και ο Δημοσθένης Καζάνας με την εργασία του για την δυναμική που εισήγαγε στην εξέλιξη του σύμπαντος το αυθόρμητο σπάσιμο της συμμετρίας του πεδίου Higgs (ApJ 1980).
It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.

Ο Δημοσθένης Καζάνας είναι ένας από τους πατέρες του πληθωρισμού, ακόμα και αν δεν έχει γίνει διάσημος γι' αυτό. Στην Ελλάδα τουλάχιστον, μάλλον δεν τον γνωρίζει κανένας.

Αναρωτιέμαι, θα βρεθεί κανένας να πάρει συνέντευξη από το Δημοσθένη Καζάνα; Ρητορικό το ερώτημα...