Δευτέρα, 14 Απριλίου 2008

John Archibald Wheeler

Χθες το πρωί (13/4/08) έφυγε από τη ζωή ο John Archibald Wheeler.

Πραγματικά, τι να πω εγώ για τον Wheeler. Καλύτερα λοιπόν να μείνω σ' αυτά που έγραψε ο Daniel Holz που είχε την τύχη να τον γνωρίζει:

...One office door was always open. As you walked by you could peek in, and see its occupant hard at work. Hunched over his notebook, scribbling away. Or standing by his bookcase, deep in thought. Most often at the blackboard, chalk in hand. This was John Archibald Wheeler, one of the legends of modern physics. He did foundational work on quantum mechanics, collaborating with Niels Bohr on some of the earliest work in nuclear fission. He invented the S-matrix. He played important roles in both the Manhattan project (atomic bomb) and the Matterhorn project (Hydrogen bomb). He made major contributions to general relativity, co-authoring with Charlie Misner and Kip Thorne the bible of the field. He was legendary for his way with words, coining such terms as wormholes, quantum foam, black holes, and the wave function of the Universe (the Wheeler-DeWitt equation). He trained generations of students; one of his first was Richard Feynman...


Ευχαριστούμε καθηγητά Wheeler.

New York Times obituary.

----------------------------------------
Update:

θέλω να προσθέσω και μία πολύ όμορφη αναφορά που κάνει ο Feynman στην διάλεξή του κατά την απονομή του Nobel, που είναι ενδεικτική:

...So, one day, when I was working for Professor Wheeler and could no longer solve the problem that he had given me, I thought about this again and I calculated the following. Suppose I have two charges - I shake the first charge, which I think of as a source and this makes the second one shake, but the second one shaking produces an effect back on the source. And so, I calculated how much that effect back on the first charge was, hoping it might add up the force of radiation resistance. It didn't come out right, of course, but I went to Professor Wheeler and told him my ideas. He said, - yes, but the answer you get for the problem with the two charges that you just mentioned will, unfortunately, depend upon the charge and the mass of the second charge and will vary inversely as the square of the distance R, between the charges, while the force of radiation resistance depends on none of these things. I thought, surely, he had computed it himself, but now having become a professor, I know that one can be wise enough to see immediately what some graduate student takes several weeks to develop. He also pointed out something that also bothered me, that if we had a situation with many charges all around the original source at roughly uniform density and if we added the effect of all the surrounding charges the inverse R square would be compensated by the R^2 in the volume element and we would get a result proportional to the thickness of the layer, which would go to infinity. That is, one would have an infinite total effect back at the source. And, finally he said to me, and you forgot something else, when you accelerate the first charge, the second acts later, and then the reaction back here at the source would be still later. In other words, the action occurs at the wrong time. I suddenly realized what a stupid fellow I am, for what I had described and calculated was just ordinary reflected light, not radiation reaction.
But, as I was stupid, so was Professor Wheeler that much more clever. For he then went on to give a lecture as though he had worked this all out before and was completely prepared, but he had not, he worked it out as he went along...

4 σχόλια:

nik-athenian είπε...

Αγαπούσε την αίθουσα διδασκαλίας και ήθελε να διδάσκει και σε προπτυχιακούς. Δεν ήταν άνθρωπος μόνο των papers.
Αμφιβάλλω αν θα βρεθεί κανείς άλλος μεγάλος στη συνέχεια, με τόση πίστη ότι τα πάντα απορρέουν από τη γεωμετρία του χώρου.

Vagelford είπε...

Nik, αυτή είναι η νοοτροπία που έχουν έξω γενικότερα. Δεν είναι όπως εδώ.
Πάντως έχει αφήσει καλούς μαθητές (όπως ο Thorn και ο Geroch) να συνεχίσουν στα βήματά του. Η αλήθεια όμως είναι ότι η γεωμετρική εικόνα δεν είναι πια της μόδας.

Btw, μία λίστα με τους πιο γνωστούς μαθητές του (όπως είναι στη wikipedia) είναι η παρακάτω:

Demetrios Christodoulou
Richard Feynman
Jacob Bekenstein
Robert Geroch
Bei-Lok Hu
John R. Klauder
Charles Misner
Milton Plesset
Kip Thorne
Arthur Wightman
Hugh Everett
Bill Unruh
Warner A. Miller

BioLogos είπε...

Δεν τον ήξερα (αγραμματοσύνη) αλλά ένας "υπερ"επιστήμονας, που ήταν δάσκαλος και καλλιέργησε τέτοια μυαλά, δν ήταν ούτε τυχαίος και το στίγμα που άφησε είναι κολοσσιαίο.

Απέδωσες άψογα και στους άσχετους λίγα λόγια τιμής και σεβασμού ως επικήδειο.

OneOdysseus είπε...

Η αναμφισβήτητη μορφή του Wheeler καθορίζεται επίσης και από την ευγενική του παρουσία στην επιστήμη (όπως μπορούμε να το εκλάβουμε αυτό, μπαίνοντας στον ορίζοντα γεγονότων του πατέρα της ονομασίας μελανή οπή). Πάντως θα ήθελα να σημειώσω ότι τα διαπιστευτήρια του είναι μάλλον ο Richard Feynman, ένας πραγματικός Φυσικός (εκτός από ελαχιστότατες εξαιρέσεις (ουσιαστικά 3-4) του πίνακα που παρέθεσε ο αρχικός σχολιαστής αυτού του post, οι υπόλοιποι θεωρώ ότι είναι (πολύ) μακράν του γνωστικού αντικειμένου της Φυσικής). Η διδακτορική διατριβή του Feynman είναι δημοσιευμένη στον εκδοτικό οίκο World Scientific μαζί με βιβλιογραφικά στοιχεία αναφορικά με την αλληλεπίδραση του Feynman και Wheeler κατά τη διάρκεια συγγραφής της.

Και προφανώς η αγάπη του Wheeler στη Γεωμετρία (αν όχι η πρωτοπορία του) ενέπνευσε πάρα πολλούς ανάμεσά τους και τον Juergen Ehlers ο οποίος 20 Μάη πέθανε αφήνοντας επίσης παρακαταθήκη τη διορατικότητά του, τη μαθηματική του ευελιξία και διόραση και πάρα πολλά άλλα που δεν είναι του παρόντος να αναφερθούν. Σίγουρα η επιστήμη γίνεται φτωχότερη με τέτοιες απώλειες αλλά ελπίζω όχι με τέτοιο τρόπο έτσι ώστε κάποιοι να γίνονται πλουσιότεροι (κυριολεκτικά και μεταφορικά).